
1

Customization by Adding Your Own Code

1 CONTENTS

1 Introduction .. 2

1.1 Read these tutorials in order .. 2

2 Adding New Files .. 2

2.1 Where Can You Add Files? .. 2

2.2 What Files Can You Add? .. 3

2.3 Why Add New Files? ... 3

3 Adding Code to a Generated File .. 3

4 End-to-End Example on Adding Your Own File and Code ... 4

4.1 Generate Code Using AspCoreGen 3.0 MVC Professional Plus ... 4

4.2 The Tutorial ... 4

2

Customization by Adding Your Own Code

1 INTRODUCTION

This topic will show you how to add your own code to the AspCoreGen 3.0 MVC’s generated code.

1.1 READ THESE TUTORIALS IN ORDER

1. Database Settings Tab
2. Code Settings Tab
3. UI Settings Tab
4. App Settings Tab
5. Selected Tables Tab
6. Selected Views Tab
7. Generating Code
8. The Generated Code for Database Tables/Views

Then follow these step-by-step instructions.

2 ADDING NEW FILES

Unlike the older versions, you can now add new files to any of the generated projects.

2.1 WHERE CAN YOU ADD FILES?

You can add files to the following generated projects:

1. Web Application Project (ASP.NET Core MVC)
2. Business Layer and Data Layer Project (Class Library).
3. Web API Project (ASP.NET Core MVC API)

3

2.2 WHAT FILES CAN YOU ADD?

Any file that is permissible by the respective projects listed above (see 2.1). For example, for an ASP.NET Core
MVC project you can add a/an:

1. MVC View
2. Controller
3. Class Files
4. Images
5. CSS Files
6. JavaScript Files
7. And many, many more

2.3 WHY ADD NEW FILES?

You don’t have to add new files, but, if you want to, you can.

Most of the time you may want to add functionality to a generated MVC View. You should not do this
because it will just get overwritten when you regenerate code for the same project. Instead add a new MVC
View and you can name it MyNewPage.cshtml.

3 ADDING CODE TO A GENERATED FILE

You can add your own customized code in some of the generated files. This is discussed in the App Settings
Tab document. Please read the App Settings Tab document to see the list of generated files where you can
add your own code to, these files will not get overwritten even when you regenerate code for the same
project.

4

4 END-TO-END EXAMPLE ON ADDING YOUR OWN FILE AND CODE

In here we’ll show you how to add files to the generated projects, and also add your own code to existing
generated files.

4.1 GENERATE CODE USING ASPCOREGEN 3.0 MVC PROFESSIONAL PLUS

You can generate your own Web Application using AspCoreGen 3.0 MVC Professional Plus and just follow
along this tutorial. Make sure to:

1. Choose Use Stored Procedures under the Generated SQL in the Database Settings tab.
2. Choose All Tables or Selected Tables Only under the Database Objects to Generate From in the Code

Settings tab.
3. Check the Use Web API under the Web API in the Code Settings tab.

Or, you can download the sample Generated Web Project Example from our website:
https://junnark.com/Products/AspCoreGen3MVC/GeneratedProjects. Download #4, the Stored Procedures
Using Web API Sample Project. Unzip the downloaded project and make sure to follow the instructions in the
Readme.txt file.

4.2 THE TUTORIAL

In this tutorial we’re going to create a new MVC View that is similar to the ListCrudRedirect.cshtml, but we will
add a functionality that shows the Supplier Name and Category Name instead of the Supplier ID and Category
ID respectively. We will also remove the UnitPrice, UnitsInStock, UnitsOnOrder, and ReorderLevel columns for
display.

1. Open the Generated Web Application (NwndSpWa.sln) in Visual Studio 2019. This solution should have
3 projects: The Web Application (NwndSpWa), the Class Library (NwndSpWaAPI), and the Web API
(NwndSpWaWebAPI) projects.

https://junnark.com/Products/AspCoreGen3MVC/GeneratedProjects

5

2. Add a new MVC View under the Products folder.

3. Choose Razor View - Empty and click the Add button.

4. Name the new MVC View: MyCustomView.cshtml and then click the Add button.

6

5. Delete all the commented code in the MyCustomView.cshtml. And then Open the
ListCrudRedirect.cshtml under the Products folder and Copy all code to MyCustomView.cshtml.

6. Now that we’ve added a new file (MVC View) to the generated Web Application Project, we will now
add code to an existing generated file. We need to add an Action Method for the
MyCustomView.cshtml in the respective ProductsController.cs.

Again, please read the App Settings Tab document to see the list of generated files where you can add
your own code to, these files will not get overwritten even when you regenerate code for the same
project.

7

7. Open the ProductsController.cs under the Controllers folder. Add an Action Method for the
MyCustomView.cshtml in the respective ProductsController.cs as shown in red below. Also add the
using statements as shown below.

8. Run the Web Application by pressing F5 while in Visual Studio 2019. And then go to the
MyCustomView MVC View. This page/view should look exactly like the ListCrudRedirect.cshtml MVC
View.

9. Close the browser and go back to Visual Studio 2019.

8

10. Open the ProductsControllerBase.cs (Parent/Base Class) under the Controllers/Base folder and then
copy the GridData method to the ProductsController.cs (Child Class). Also add the using statements to
the ProductsController.cs as shown below.

9

11. In the ProductsController.cs, change the name of the GridData method to MyGridData.

12. In the MyCustomView.cshtml, we are going to use the new MyGridData method that we added on the
ProductsController.cs as the source of the grid’s data. To do this, simply change the URL property of
JQGrid from GridData to MyGridData as shown below. Also change the title of the page.

10

13. Run the Web Application by pressing F5 while in Visual Studio 2019. And then go to the
MyCustomView MVC View. This page/view should look just like the ListCrudRedirect.cshtml MVC View
with a new page title.

14. Close the browser and go back to Visual Studio 2019.
15. Let’s remove the Unit Price, Units In Stock, Units On Order, and Reorder Level from the grid. In the

MyCustomView, delete the Unit Price, Units In Stock, Units On Order, and Reorder Level in the
colNames and colModel properties of the JQGrid. The code should look like the one shown below after
deletion.

11

16. In the ProductsController under the MyGridData method, delete the lines of code that pertains to the

Unit Price, Units In Stock, Units On Order, and Reorder Level. The code should look like the one shown
below after deletion.

17. Run the Web Application by pressing F5 while in Visual Studio 2019. And then go to the
MyCustomView MVC View. The Unit Price, Units In Stock, Units On Order, and Reorder Level should no
longer be displayed on the grid.

12

18. Close the browser and go back to Visual Studio 2019.
19. Now we will change the display on the Supplier ID and Category ID. Instead of showing just the IDs for

these foreign keys, we will show the Company Name (Supplier) and Category Name (Category)
respectively. To do this, we need to:

a. Create a new Stored Procedure.
b. Create 2 new Properties as Models for Company Name and Category Name.
c. Create a new Data Layer method.
d. Create a new Business Layer method.
e. Create a new Web API method.

Note: There are many other ways to do this (since programming is also an art, not just science), but
we’d like to walk you through the process of Adding New Code to the generated Web Application
and Updating Existing generated code.

20. Create a new Stored Procedure named acg3mvc_Products_MySelectSkipAndTake in the Northwind
Database using Microsoft SQL Server Management Studio. Go to the Stored Procedures folder under
Programmability and Modify the acg3mvc_Products_SelectSkipAndTake Stored Procedure.

13

21. This will open up the acg3mvc_Products_SelectSkipAndTake Stored Procedure on a window.

22. Modify the Stored Procedure. Change the ALTER keyword to CREATE. Change the Stored Procedure
name to acg3mvc_Products_MySelectSkipAndTake. Add INNER JOINs to the Suppliers and Categories
tables. Remove references to the UnitPrice, UnitsInStock, UnitsOnOrder, and ReorderLevel columns.

14

23. Make sure to click Execute in the Microsoft SQL Server Management Studio’s menu to create the
acg3mvc_Products_MySelectSkipAndTake Stored Procedure. When you refresh the Stored
Procedures, the acg3mvc_Products_MySelectSkipAndTake should now be displayed.

24. Create 2 new Properties as Models for CompanyName and CategoryName. Open the
ProductsModel.cs located in the NwndSpWaAPI (Class Library Project) under the Models folder. Add
the CompanyName (Suppliers Database Table) and CategoryName (Categories Database Table)
properties. Also add the using statement as shown below.

15

25. Create a new Data Layer method. Open the ProductsDataLayerBase.cs (Parent/Base Class) and the
ProductsDataLayer.cs (Child Class) under the DataLayer/Base and DataLayer folders respectively. Copy
the following methods to the ProductsDataLayer.cs from the ProductsDataLayerBase.cs:

a. SelectSkipAndTakeAsync method.
b. SelectSharedAsync method.
c. CreateProductsFromDataRowShared method.

16

26. Change the name of the following methods in the ProductsDataLayer.cs. Also add the using
statements as shown below.

a. SelectSkipAndTakeAsync to MySelectSkipAndTakeAsync.
b. SelectSharedAsync to MySelectSharedAsync.
c. CreateProductsFromDataRowShared to MyCreateProductsFromDataRowShared.

17

27. Change the Stored Procedure name to acg3mvc_Products_MySelectSkipAndTake under the
MySelectSkipAndTakeAsync method. This is the Stored Procedure that we created earlier.

28. Change the CreateProductsFromDataSource method reference to MyCreateProductsFromDataSource

under the MySelectSharedAsync method.

29. Add code assignments for the CompanyName and CategoryName in the
MyCreateProductsFromDataSource method. Also, remove references to the UnitPrice, UnitsInStock,
UnitsOnOrder, and ReorderLevel.

18

30. Create a new Business Layer method. Open the ProductsBase.cs (Parent/Base Class) and the
Products.cs (Child Class) under the BusinessObject /Base and BusinessObject folders respectively. Copy
the following methods to the Products.cs from the ProductsBase.cs:

a. SelectSkipAndTakeAsync method.
b. GetSortExpression method.

19

31. Change the name of the following methods in the Products.cs. Also add the using statements as shown
below.

a. SelectSkipAndTakeAsync to MySelectSkipAndTakeAsync.
b. GetSortExpression to MyGetSortExpression.

Also, under the MySelectSkipAndTakeAsync method, change the GetSortExpression reference to
MyGetSortExpression and the SelectSkipAndTakeAsync reference to MySelectSkipAndTakeAsync.

20

32. Create a new Web API method. Copy the SelectSkipAndTake method from the
ProductsApiControllerBase.cs (Parent/Base Class) to the ProductsApiController.cs (Child Class). Both
the ProductsApiControllerBase.cs and ProductsApiController.cs are in the Web API Project
(NwndSpWaWebAPI) under the Controllers/Base and Controllers folders respectively. Also add the
using statements as shown below.

21

33. In the ProductsApiController, change the SelectSkipAndTake Web API method name to
MySelectSkipAndTake. Also change the SelectSkipAndTakeAsync (Business Object) name reference to
MySelectSkipAndTakeAsync as shown below.

34. Now that all the code plumbing is done, we just need to display the CompanyName and CategoryName
as we originally intended. First we need to reference the MySelectSkipAndTake Web API, and then add
code that will display the CompanyName and CategoryName under the ProductsController as shown
below.

22

35. In the MyCustomView.cshtml MVC View, change the colNames to Supplier and Category respectively.
Also, remove the SupplierID and CategoryID and replace with CompanyName and CategoryName
respectively as shown below.

36. Run the Web Application by pressing F5 while in Visual Studio 2019. And then go to the

MyCustomView MVC View.

This finished MVC View no longer shows the UnitPrice, UnitsInStock, UnitsOnOrder, and ReorderLevel
columns. It also shows the CompanyName (Supplier) and CategoryName (Category) with the
SupplierID and CategoryID in parenthesis instead of just showing the SupplierID and CategoryID
respectively. The CompanyName (Supplier) and CategoryName (Category) are also sortable.

You can read end-to-end tutorials on more subjects on using AspCoreGen 3.0 MVC Professional Plus that came with your purchase.
These tutorials are available to customers and are included in a link on your invoice when you purchase AspCoreGen 3.0 MVC
Professional.

Note: Some features shown here are not available in the Express Edition. The code in this tutorial is available for download for
paying customers only, please email us at Software Support for more information.

End of tutorial.

