
1

The Generated Code for Database Tables

1 Introduction .. 3

1.1 Read these tutorials in order .. 3

1.2 Generated Code for Database Tables ... 3

1.3 Generated Projects ... 3

2 N-Tier Layering .. 4

2.1 Front End .. 4

2.2 Middle-Tier/ Middle Layer .. 4

2.3 Data-Tier/ Data Layer .. 4

2.4 SQL Scripts .. 4

3 Generated Projects ... 5

3.1 Web Application Project ... 6

3.1.1 wwwroot ... 6

1. css (folder): ... 7

2. images (folder): ... 7

3. js (folder): .. 8

4. lib (folder): .. 8

5. favicon.ico: .. 9

3.1.2 Helper ... 9

1. Functions.cs: .. 9

3.1.3 Razor Pages ... 10

3.1.3.1 Razor Pages Generated for Database Tables ... 11

3.1.3.2 Partial Razor Pages for Database Tables ... 11

3.1.3.3 Other Partial Razor Pages .. 12

3.1.3.3.1 _Layout.cshtml.. 13

3.1.3.3.2 _ValidationScriptPartial.cshtml ... 13

3.1.3.3.3 _ViewImports.cshtml .. 14

3.1.3.3.4 _ViewStart.cshtml ... 14

3.1.3.4 Index.cshtml Razor Page ... 15

3.1.4 appsettings.json .. 15

3.1.5 Program.cs .. 15

3.1.6 StartUp.cs .. 16

3.2 Business Object and Data Layer API Project .. 16

3.2.1 Middle Tier (Business Object) ... 17

3.2.1.1 Parent (Base) Class .. 18

2

3.2.1.2 Child Class – The Business Object .. 18

3.2.2 Data Layer ... 19

3.2.2.1 Parent (Base) Class .. 20

3.2.2.2 Child Class – The Data Layer .. 20

3.2.3 Domain .. 21

3.2.3.1 CrudOperation.cs .. 21

3.2.4 Models .. 22

3.2.4.1 Parent (Base) Class .. 22

3.2.4.2 Child Class – The Model .. 23

3.2.5 EF (Entity Framework) ... 24

3.2.5.1 Generated Entity Model .. 25

3.2.5.2 Why internal? .. 25

3.2.6 AppSettings.cs ... 26

3.3 Web API Project .. 27

3.3.1 LaunchSettings.json, appsettings.json, Program.cs, and StartUp.cs ... 27

3.3.2 Controllers .. 28

3.3.2.1 Parent (Base) Class .. 28

3.3.2.2 Child Class – The Controller (Web API) .. 29

3.3.2.3 Accessing Web API Controllers .. 29

3

The Generated Code for Database Tables

1 INTRODUCTION

This topic will walk you through AspCoreGen 3.0 Razor’s generated code.

1.1 READ THESE TUTORIALS IN ORDER

1. Database Settings Tab
2. Code Settings Tab
3. UI Settings Tab
4. App Settings Tab
5. Selected Tables Tab
6. Selected Views Tab
7. Generating Code

Then follow these step-by-step instructions.

1.2 GENERATED CODE FOR DATABASE TABLES

In the Generating Code Tutorial under the Database Objects to Generate From, there are four (4) database
objects where we can generate code from. This tutorial will discuss the generated code for database tables
only:

1. All Tables
2. Selected Tables Only

1.3 GENERATED PROJECTS

In the App Settings Tutorial there are 3 projects that can be generated in a solution:

o Web Application Project (Front End)
o Business Layer and Data Layer API Project (Class Library Project – Middle and Data Tier)
o Web API Project (Optional)

We will be discussing these generated projects including the Web API Project.

4

2 N-TIER LAYERING

AspCoreGen 3.0 Razor generates code in an n-tier architecture. A presentation tier (the client), middle tier
(business objects), data tier (data access objects), and the database scripts such as stored procedures. Code
are separated in different layers.

2.1 FRONT END

User Interface or Presentation Layer. Razor Pages and Razor Page Models, Partial Razor Pages and Partial
Razor Page Models, JavaScript, CSS, JQuery, and more.

2.2 MIDDLE-TIER/ MIDDLE LAYER

1. Business Logic Class files, Models etc. Or,
2. Web API (Optional). Optionally encapsulate calls to Business Objects when generating Web API code.

2.3 DATA-TIER/ DATA LAYER

Class Files using Linq-to-Entities - Entity Framework Core or Ad-Hoc SQL.

2.4 SQL SCRIPTS

Stored Procedures.

5

3 GENERATED PROJECTS

There are 3 projects that can be generated by AspCoreGen 3.0 Razor Professional Plus including the optional
Web API project. In addition, if you chose Stored Procedures under the Generated SQL Script in the Database
Settings Tab, these SQL scripts will be generated straight in your MS SQL Server Database’s Stored Procedures
folder.

Generated Projects in Visual Studio

6

3.1 WEB APPLICATION PROJECT

The generated Web Application Project is the User Interface, Front End, or Presentation Layer part of the N-tier
layer generated code. This is an ASP.NET Core Razor Page project. The application’s main purpose is to serve
as a client’s user interface. The Presentation Layer is what the users see, use, and interact with.

In this example, the MyApp project is the Web Application Project that was generated. Everything in this
project is used to present users with an interface they can interact with, except the optional CodeExamples
folder which contains Class Files for each of the database tables showing code examples on how to access the
Middle-Tier/Business Objects to do CRUD* operations.

As shown in the N-Tier Layering above, the Front End (Razor Page) accesses the Middle Tier (class) to do any
kind of operation. Alternatively, it can also access the Web API instead of the Middle Tier (class).

3.1.1 wwwroot

This folder is generally needed by ASP.NET Core Razor Page project as the Web Root of the project by default.
You can place static files needed by the ASP.NET Core Razor Page project here. You can add folders and files
and name them to whatever you like.

7

1. css (folder): Contains styles including 24 different JQuery-UI themes used by the project. You can add
your own stylesheets here. You can also add and updates styles in the site.css stylesheet.

2. images (folder): Contains images used by the project. You can add your own images here.

8

3. js (folder): Contains javascript files including JQGrid and JQuery plugins used by the project. You can
add your own scripts here.

4. lib (folder): Contains libraries, both styles and javascript used by the project. By default, these

libraries are included even if you do not use AspCoreGen 3.0 Razor to generate the code. You can add
your own libraries here; however, we recommend that you do not.

9

5. favicon.ico: An icon used by the browser as the default icon for your project. You can change this to
your own icon (brand).

3.1.2 Helper

This folder houses helper Class(es).

1. Functions.cs: Reusable Functions or Methods used by the Front-End application. You can add your
own code here.

Read the documentation comments on each one of the methods to learn about their respective
functionalities.

10

3.1.3 Razor Pages

This folder is generally needed by ASP.NET Core Razor Page project by default. It houses Razor Pages. You can
add your own Razor Pages here. All the Razor Pages generated by AspCoreGen 3.0 Razor will be overwritten
the next time you generate code for the same project.

Note: Do not add any code in any of the generated Razor Pages. Please see the AppSettingsTab Tutorial,
page 5 (1.1.2 Files That Will Always Be Overwritten) for more information.

For more information on the different kinds of Razor Pages generated by AspCoreGen 3.0 Razor, please see
the UISettingsTab Tutorial on Razor Pages to Generate, starting in page 6.

11

3.1.3.1 Razor Pages Generated for Database Tables

These Razor Pages are generated based on the Database Tables you generated code for. Each Folder as
shown below is directly related to a Database Table.

Razor Pages in Visual Studio (Left) – Database Tables in MS SQL Server (Right)

3.1.3.2 Partial Razor Pages for Database Tables

These Partial Razor Pages are generated based on the Database Tables you generated code for. Each Partial
Razor Page is directly related to the respective Database Table as shown below and has a prefix “_AddEdit”.
Partial Razor Pages are located in the Pages/Shared Folder. The ASP.NET Core RAZOR PAGE PROJECT naming
convention for Partial Razor Pages starts with an Underscore “_” prefix.

Partial Razor Pages in Visual Studio (Left) – Database Tables in MS SQL Server (Right)

12

Each Partial Razor Page is used by the ***Add.cshtml and ***Update.cshtml Razor Pages.

3.1.3.3 Other Partial Razor Pages

These are mainly ASP.NET Core Razor Page project default Partial Razor Pages. The ASP.NET Core Razor Page
project naming convention for Partial Razor Pages starts with an Underscore “_” prefix.

13

3.1.3.3.1 _Layout.cshtml

The _Layout.cshtml is a Partial Razor Page that is the default overall design or master page for all the Razor
Pages that incorporates it. Razor Pages that incorporate the _Layout.cshtml starts it’s code base where it
shows the @RenderBody() code shown below. You can change the overall design of all the generated Razor
Pages by changing all or a few code here.

3.1.3.3.2 _ValidationScriptPartial.cshtml

The _ValidationScriptPartial.cshtml is a Partial Razor Page that references javascript (jQuery) libraries for use
when validating controls for errors. You can add your own code here.

14

It is used by Razor Pages: Add.cshtml, Update.cshtml, Unbound.cshtml, and ListCrud.cshtml as shown below.

3.1.3.3.3 _ViewImports.cshtml

This Partial Razor Page imports directives that can be shared throughout all the generated Razor Pages. You can add
your own code here.

3.1.3.3.4 _ViewStart.cshtml

By default, this Partial Razor Page is ran before any Razor Page. You can add your own code here.

15

3.1.3.4 Index.cshtml Razor Page

This Razor Page is the default page of the Web Application Project.

3.1.4 appsettings.json

This is a settings json file used by the ASP.NET Core Razor Page Web Application Project by default. You can

add your own code here.

3.1.5 Program.cs

The Program.cs Class is the entry point to the ASP.NET Core Razor Page Web Application Project by default.
An ASP.NET Core Razor Page web application project is technically a Console app. Just like any Console app,
execution of the app starts at the Program Class’s Main() Method. You can add your own code here.

16

3.1.6 StartUp.cs

The StartUp Class also starts execution before any ASP.NET Razor Page runs and is called by the Program Class
as shown above, “webBuilder.UserStartup<Startup>()”. Here, you can set or configure services that can be
used globally in the Web Application Project by default. You can add your own code here.

3.2 BUSINESS OBJECT AND DATA LAYER API PROJECT

The generated Business Object and Data Layer API Project contains the Middle-Tier and Data-Tier part of the
N-tier layer generated code (and other classes as well). This is a Class Library core project. Classes/Objects
here can be reused by other projects/clients except the Data Layer Classes and the AppSettings Class.

The Business Object and Data Layer API Project is referenced by the Web Application Project and Web API
Project for use. You can also reference this project from other projects that you add to the generated Solution
or altogether copy the whole project to your own custom projects, and many more possibilities for reuse.

17

3.2.1 Middle Tier (Business Object)

The Business Object (Middler Tier) Class Files are located in the BusinessObject Folder.

The Middle-Tier’s (or Middle Layer) main purpose is to serve as a client’s (a program’s) only access to the
Business Objects. A Business Object’s purpose is to calculate things. For the purposes of AspCoreGen 3.0
Razor code generation, in most parts, there really is nothing to calculate, instead, the Business Object classes
just returns data handed to it by the Data Layer classes, or carries and passes the CRUD* operations that the
Data Layer need to handle.

The Calculations we are talking about here are not just math problems, instead, these are logic that the Client
(controller, asp.net web form, web api, wcf program etc.) needs. For most parts, any Client should not be
doing any kind of calculation, instead, a line of code referencing a Middle-Tier Class’s Method should readily
return that logic.

For example (this is just an example and not generated by AspCoreGen 3.0 Razor), let us say somewhere in the
Razor Page Model it needs the full name of a person.

var fullName = User.GetFullName();

In this example, “User” is the Business Object (Middle-Tier Class), “GetFullName()” is a Public Method in the
“User” Business Object Class. Somewhere in the “GetFullName()” Method, it’s calculating the first name and
last name of the user, return a full name, e.g.

return User.FirstName + “ “ + User.LastName;

18

3.2.1.1 Parent (Base) Class

These are the class files generated in the Base folder. The naming convention used is: TableNameBase.cs.

Do not add any code in these Class files.

One Class is generated per Database Table you generated code for. The example below shows that you
generated code for All Tables for the Northwind database.

Base (Parent) Classes in Visual Studio (Left) – Database Tables in MS SQL Server (Right)

3.2.1.2 Child Class – The Business Object

These are the Class files generated directly under the BusinessObject folder (not including everything inside
the Base folder). The naming convention used is: TableName.cs. One Business Object Class is generated per
Database Table.

Child Classes in Visual Studio (Left) – Database Tables in MS SQL Server (Right)

19

You can add code in these Class files. You access all the Business Object methods and properties using this
Class.

These are the Classes that any client should access, the Middle Tier Classes unless you also generated the
optional Web API Project. Otherwise, you can also access the Web API Project’s public methods.

Note 1: When you generate the optional Web API Project, AspCoreGen 3.0 Razor’s generated code will always
access Web API Methods from clients like the Razor Page Model class. These Web API Methods encapsulates
calls to the related/respective Business Object Methods as shown in the N-Tier Layering in page 4.

Note 2: You do not always have to access the Web API Methods (from any client) generated by AspCoreGen
3.0 Razor, you can also access the Business Object Classes directly if you want to. Again, please refer to Note 1
above.

3.2.2 Data Layer

The Data Tier’s (or Data Layer) main purpose is to interact with the database. It does all the CRUD*
operations.

Note 1: The Data Layer is called by the Middle Tier, and once the CRUD operation is done it returns the
control back to the Middle Tier.

Note 2: A Data Layer Class should only be called by their respective Middle Layer Class. Data Layer Classes
have an “internal” access modifier to prevent clients outside of the Business Object and Data Layer API Project
access.

Note 3: Since Data Layer Classes have an “internal” access modifier, any (Class, Method) code you create in
the Business Object and Data Layer API Project will be able to access these Classes. Again, no Class should
access a Data Tier Class other than a Middle Tier Class, please see Note 1.

The Data Tier (Data Layer) Class Files are located in the DataLayer Folder.

20

3.2.2.1 Parent (Base) Class

These are the class files generated in the Base folder. The naming convention used is:
TableNameDataLayerBase.cs. Do not add any code in these Class files.

One Class is generated per Database Table you generated code for. The example below shows that you
generated code for All Tables for the Northwind database.

Base (Parent) Classes in Visual Studio (Left) – Database Tables in MS SQL Server (Right)

3.2.2.2 Child Class – The Data Layer

These are the Class files generated directly under the DataLayer folder (not including everything inside the
Base folder). The naming convention used is: TableNameDataLayer.cs. One Data Layer Class is generated per
Database Table.

Child Classes in Visual Studio (Left) – Database Tables in MS SQL Server (Right)

21

You can add code in these Class files. You access all the Data Layer methods and properties using this Class.

These are the Classes that Middle Tier Classes should access.

Note 1: Only a Middle Tier Class should access their respective Data Layer Class.

3.2.3 Domain

The Domain Folder contains 1 reusable enum type object; the CrudOperation.cs.

3.2.3.1 CrudOperation.cs

The CrudOperation enum is used to determine whether an Add or Update operation needs to be handled.

22

3.2.4 Models

These are Classes that contains Properties for each of the Database Table you generated code for. A Property
is equivalent to a Field or Column in the respective Database Table.

So why are Models generated in the Business Object and Data Layer API Project instead of the Web Application
Project where the Razor Pages and the respective Razor Page Models are? Simple, Models are reusable.

The Models are located in the Models Folder.

3.2.4.1 Parent (Base) Class

These are the class files generated in the Base folder. The naming convention used is:
TableNameModelBase.cs. Do not add any code in these Class files.

One Class is generated per Database Table you generated code for. The example below shows that you
generated code for All Tables for the Northwind database.

Base (Parent) Classes in Visual Studio (Left) – Database Tables in MS SQL Server (Right)

23

Here is an example of the Products Table Columns (Fields) in the Northwind database in relation to the
generated Model.

Model (Base) Class in Visual Studio (Left) – Products Database Table Columns in MS SQL Server (Right)

3.2.4.2 Child Class – The Model

These are the Class files generated directly under the Models folder (not including everything inside the Base
folder). The naming convention used is: TableNameModel.cs. One Model Class is generated per Database
Table.

You can add code in these Class files.

Child Classes in Visual Studio (Left) – Database Tables in MS SQL Server (Right)

24

Models are inherited by the respective Business Object Class. So when you instantiate a Business Object, you
will have access to the Models (Properties) for that Business Object.

For example, when you instantiate a Products Business Object, you will also be able to access the inherited
Models and of course all the other objects in the Products Business Object. See below.

3.2.5 EF (Entity Framework)

These classes are generated in the EF folder when you choose Use Linq-to-Entities (Entity Framework Core) in
the Database Settings tab under the Generated SQL group as discussed in page 6 of the DatabaseSettingsTab
tutorial document.

25

3.2.5.1 Generated Entity Model

The generated Entity Models/Classes are very similar to the ones that can be generated by Visual Studio when
you issue a Scaffold-DbContext command (we will not discuss this command here because it is outside the
scope of this tutorial). One of the main difference is that each Entity Model/Class and all of the respective
properties are internal while the ones generated by Visual Studio are public.

3.2.5.2 Why internal?

The generated BusinessObject (public) classes have the same name as the generated Entity Models (internal). Clients
that calls the Middle Tier/BusinessObject classes expects a BusinessObject class as a return and NOT an Entity Model.

Business Object Classes (Left), MS SQL Database (Middle), Entity Models/Classes (Right)

26

The example below shows that the call to a Middle Tier BusinessObject expects a List of Categories (BusinessObject).

3.2.6 AppSettings.cs

The AppSettings.cs is only generated when you choose Use Stored Procedures or Use Ad Hoc/Dynamic SQL
under the Generated SQL group in the Database Settings Tab. It has one method: GetConnectionString(). The
Database Connection fields you entered under the Database Settings Tab are saved here in a Database
Connection String format.

The goal of the GetConnectionString() method is to simply return the Database Connection String.

Do not add code to this Class.

27

3.3 WEB API PROJECT

The generated Web API Project is an optional project. This is an ASP.NET MVC API core project. The
application’s main purpose is to serve as Web APIs to clients such as the Web Application Project. In the Ntier-
Layering illustrations #2 and #3 in page 4, the Web Application Project (ASP.NET Core Razor Pages) and other
clients are seen accessing the Web APIs instead of directly accessing the Middle Tier Objects.

These Web APIs encapsulates the Middle Layer (Business Objects). As mentioned in this document, clients can
either access the generated Web APIs or the Middle Layer (Business Objects) directly. But, when you generate
the optional Web API Project, the generated code will directly reference the Web APIs instead of the Middle
Layer (Business Objects).

The main difference between the generated Web Application Project and the Web API Project is that the Web
API Project only contains Controllers (Web APIs) as the main objects of the project, and it does not have a user
interface.

3.3.1 LaunchSettings.json, appsettings.json, Program.cs, and StartUp.cs

These are similar objects as the ones seen in the Web Application Project. Please see the Web Application
Project for more information about these objects.

28

3.3.2 Controllers

The Controllers are the Web APIs.

This folder is generally needed by ASP.NET Core MVC by default. It houses Controllers that can be used as
Web APIs.

3.3.2.1 Parent (Base) Class

These are the class files generated in the Base folder. The naming convention used is:
TableNameAPIControllerBase.cs. Because it’s just a regular Class file, ASP.NET Core MVC does not really
recognize it other than it being a Class file.

Do not add any code in these Class files.

One Class is generated per Database Table you generated code for. The example below shows that you
generated code for All Tables for the Northwind database.

Base Controllers in Visual Studio (Left) – Database Tables in MS SQL Server (Right)

29

3.3.2.2 Child Class – The Controller (Web API)

These are the Class files generated directly under the Controllers folder (not including everything inside the
Base folder). The naming convention used is: TableNameAPIController.cs. ASP.NET Core MVC recognizes this
as a Controller by default because of the suffix “Controller” in the name. One Controller is generated per
Database Table.

You can add code in these Class files.

Child Controllers in Visual Studio (Left) – Database Tables in MS SQL Server (Right)

3.3.2.3 Accessing Web API Controllers

Just like mentioned above, the Web API Project does not have a user interface. We need to access Web API
Controllers via code using HttpClient calls.

For example, we need to make an HttpClient Get Request call from the Web Application Project’s Razor Page
Model (e.g. Products_ListForeach.cshtml.cs) to access the GetRecordCount() Method in the Web API Controller
(ProductsAPIControllerBase).

To make an HttpClient Get Request call, we use the:

1. Web API Project’s Web Address (URL, https://localhost:44306/)
2. Controller’s name (ProductsAPI, minus the word “Controller”),
3. And the Method name (GetRecordCount())

30

The example below shows that GetRecordCount() (Web API Project) was called from the GridData Method
(Web Application Project) using the Web API’s base URL “https://localhost:44306/” (Functions Class in the Web
Application Project) plus the “ProductsAPI/GetRecordCount”.

* CRUD means Create, Retrieve, Update, and Delete. These are database operations.

You can read end-to-end tutorials on more subjects on using AspCoreGen 3.0 Razor Professional Plus that
came with your purchase. These tutorials are available to customers and are included in a link on your invoice
when you purchase AspCoreGen 3.0 Razor Professional.

Note: Some features shown here are not available in the Express Edition.

End of tutorial.

