
1

The Generated Code for Database Tables

1 Introduction .. 3

1.1 Read these tutorials in order .. 3

1.2 Generated Code for Database Tables ... 3

1.3 Generated Projects ... 3

2 N-Tier Layering .. 4

2.1 Front End .. 4

2.2 Middle-Tier/ Middle Layer .. 4

2.3 Data-Tier/ Data Layer .. 4

2.4 SQL Scripts .. 4

3 Generated Projects ... 5

3.1 Web Application Project ... 5

3.1.1 wwwroot ... 6

1. css (folder): ... 7

2. images (folder): ... 7

3. js (folder): .. 8

4. lib (folder): .. 8

5. favicon.ico: .. 9

3.1.2 Controllers .. 9

3.1.2.1 The Controller - Used Like A Base Class ... 10

3.1.2.1.1 Code Separated By Regions .. 10

3.1.2.1.1.1 Actions Used by Their Respective Views .. 11

3.1.2.1.1.2 Public Methods .. 12

3.1.2.1.1.3 Private Methods .. 13

3.1.2.1.1.4 Methods that Return Data in JSON Format Use by the JQGrid .. 13

3.1.2.2 The Controller - Empty .. 14

3.1.2.2.1.1 HomeController ... 14

3.1.3 Helper ... 15

1. Functions.cs: .. 15

3.1.4 Views ... 16

3.1.4.1 Views Generated for Database Tables .. 17

3.1.4.2 Partial Views for Database Tables ... 17

3.1.4.3 Other Partial Views ... 18

3.1.4.3.1 _Layout.cshtml.. 19

3.1.4.3.2 _ValidationScriptPartial.cshtml ... 19

2

3.1.4.3.3 _ViewImports.cshtml .. 20

3.1.4.3.4 _ViewStart.cshtml ... 20

3.1.4.4 Index.cshtml View ... 21

3.1.5 appsettings.json .. 21

3.1.6 Program.cs .. 21

3.2 Middle Layer Project (Business Layer, Data Repository, Shared Libraries) ... 22

3.2.1 Business Layer (Middle Tier) ... 22

3.2.1.1 Partial Interface/Partial Class – Used Like A Base Interface/Class ... 23

3.2.1.2 Business Layer - Empty .. 24

3.2.2 Data Repository (Data Tier) ... 24

3.2.2.1 Partial Interface/Partial Class – Used Like A Base Interface/Class ... 25

3.2.2.2 Data Repository - Empty ... 26

3.2.3 Domain .. 26

3.2.3.1 CrudOperation.cs .. 27

3.2.3.2 FieldType.cs ... 27

3.2.4 Models .. 27

3.2.4.1 Partial Class – Used Like A Base Class .. 28

3.2.4.2 Models - Empty ... 29

3.2.5 View Models ... 30

3.2.5.1 Partial Class – Used Like A Base Class .. 30

3.2.5.2 View Model - Empty .. 31

3.2.5.2.1 ListSearch.cshtml .. 32

3.2.5.2.2 ListInline.cshtml .. 34

3.2.5.2.3 ListCrud.cshtml ... 35

3.2.5.2.4 ListByForeignKey.cshtml ... 36

3.2.5.3 Foreach View Models .. 37

3.2.5.4 Partial Class – Used Like A Base Class .. 37

3.2.5.5 Foreach View Model – Empty ... 38

3.3 Web API Project (Web Services) ... 40

3.3.1 LaunchSettings.json, appsettings.json, Program.cs ... 41

3.3.2 Controllers .. 41

3.3.2.1 The Controller - Used Like A Base Class ... 41

3.3.2.2 The Controller - Empty .. 42

3.3.2.3 Accessing Web API Controllers (Methods) .. 42

3.3.3 Swagger ... 44

3

The Generated Code for Database Tables

1 INTRODUCTION

This topic will walk you through AspCoreGen 6.0 MVC’s generated code.

1.1 READ THESE TUTORIALS IN ORDER

1. Database Settings Tab
2. Code Settings Tab
3. UI Settings Tab
4. App Settings Tab
5. Selected Tables Tab
6. Selected Views Tab
7. Generating Code

Then follow these step-by-step instructions.

1.2 GENERATED CODE FOR DATABASE TABLES

In the Generating Code Tutorial under the Database Objects to Generate From, there are four (4) database
objects where we can generate code from. This tutorial will discuss the generated code for database tables
only:

1. All Tables
2. Selected Tables Only

1.3 GENERATED PROJECTS

In the App Settings Tutorial there are 3 projects that can be generated in a solution:

o Web Application Project (User Interface)
o Middle Layer Project (Class Library Project – Business Layer, Data Repository, and Shared Libraries)
o Web API Project (Web Services - Optional)

We will be discussing these generated projects including the Web API Project.

4

2 N-TIER LAYERING

AspCoreGen 6.0 MVC generates code in an n-tier architecture. A presentation tier (the client), middle tier
(business layer), data tier (data repository), and the database scripts such as stored procedures. Code are
separated in different layers.

2.1 FRONT END

User Interface or Presentation Layer. Views, Controllers, JavaScript, CSS, JQuery, and more.

2.2 MIDDLE-TIER/ MIDDLE LAYER

1. Business Layer Interface and Class, Models, Views, View Models, etc. Or,
2. Web API (Optional). Optionally encapsulate calls to the Business Layer when generating Web API code.

2.3 DATA-TIER/ DATA LAYER

Data Repository Interface and Class, Class Files using Linq-to-Entities - Entity Framework Core or Ad-Hoc SQL.

2.4 SQL SCRIPTS

Stored Procedures.

5

3 GENERATED PROJECTS

There are 3 projects that can be generated by AspCoreGen 6.0 MVC Professional Plus including the optional
Web API project. When you chose Stored Procedures under the Generated SQL Script in the Database Settings
Tab, these SQL scripts will be generated straight in your MS SQL Server Database’s Stored Procedures folder.

Generated Projects in Visual Studio

3.1 WEB APPLICATION PROJECT

The generated Web Application Project is the User Interface, Front End, or Presentation Layer part of the N-tier
layer generated code. This is an ASP.NET MVC core project. The application’s main purpose is to serve as a
client’s user interface. The Presentation Layer is what the users see, use, and interact with.

6

In this example, the MyApp project is the Web Application Project that was generated. Everything in this
project are used to present users with an interface they can interact with, except the optional CodeExamples
folder which contains Class Files for each of the database tables showing code examples on how to access the
Middle-Tier/Business Layers to do CRUD* operations.

As shown in the N-Tier Layering above, the Front End (MVC view) accesses the Middle Tier (class) to do any
kind of operation. Or it can also access the Web API instead of the Middle Tier (class).

3.1.1 wwwroot

This folder is generally needed by ASP.NET Core MVC as the Web Root of the project by default. You can
place static files needed by the ASP.NET Core MVC project here. You can add folders and files and name them
to whatever you like.

7

1. css (folder): Contains styles including 24 different JQuery-UI themes used by the project. You can add
your own stylesheets here. You can also add and updates styles in the site.css stylesheet.

2. images (folder): Contains images used by the project. You can add your own images here.

8

3. js (folder): Contains javascript files including JQGrid and JQuery plugins used by the project. You can
add your own scripts here.

4. lib (folder): Contains libraries, both styles and javascript used by the project. By default, these

libraries are included even if you don’t use AspCoreGen 6.0 MVC to generate the code. You can add
your own libraries here, however, we recommend that you don’t.

9

5. favicon.ico: An icon used by the browser as the default icon for your project. You can change this to
your own icon (brand).

3.1.2 Controllers

This folder is generally needed by ASP.NET Core MVC by default. It houses Controllers used by the MVC Views.
You can add your own Controllers here, and you don’t need to copy the same layout such as that the
Controllers generated by AspCoreGen 6.0 MVC. There are 2 Controllers with the same name (partial class)
per database table, one directly under the Controllers folder, and the other under the Controllers/Base folder.

You can add your own Methods and or Actions in any existing Controller generated by AspCoreGen 6.0 MVC
found directly beneath the Controller folder, these partial classes will not be overwritten when you
regenerate code for the same project (in this example - MyApp). Please see the AppSettingsTab Tutorial, page
4 (1.1.1 Files That Will Be Written Once) for more information.

Note: Do not add any code in any of the Controller generated in the Controller/Base folder. Please see the
AppSettingsTab Tutorial, page 4 (1.1.2 Files That Will Always Be Overwritten) for more information.

10

3.1.2.1 The Controller - Used Like A Base Class

Note: Not a base class. The code needed by the Controller are generated in these partial classes. These are
the partial class files generated in the Controllers\Base folder. The naming convention used is:
TableNameController.cs.

Do not add any code in these Partial Class files.

One Partial Class (in the Controllers\Base folder) is generated per Database Table. The example below shows
that you generated code for All Tables for the Northwind database.

Controllers (Partial Classes) in Visual Studio (Left) – Database Tables in MS SQL Server (Right)

3.1.2.1.1 Code Separated By Regions

Because so much code is generated (depending on the number of Database Tables you have), the generated
code is separated by Regions to classify the type of Methods that were generated.

11

3.1.2.1.1.1 Actions Used by Their Respective Views

These are the Action methods used by their respective MVC Views under the Views folder. The
ProductController partial class shown below is located in the Controller\Base folder.

12

The ProductController looks for the Product folder under Views folder by default. The same goes for the MVC
Views in the Views folder under the Product folder, it will look for the respective action in the
ProductController.

For example, the Add.cshtml View under the Product folder will look for an Add Action method in the
ProductController. In the same way, the ListCrudRedirect.cshtml View under the Product folder will look for a
ListCrudRedirect Action method in the ProductController. So you see the pattern here.

So why does the Add and Update have 2 Action methods each, while the Details, ListCrudRedirect,
ListReadOnly, etc. only have 1 Action method each? The Add and Update MVC Views both requires a Get and
Post Action methods, while the Details, ListCrudRedirect, ListReadOnly MVC Views only require a Get Action
method. Each ASP.NET Core MVC View require a Get Action method minimum by default.

Note: Since both the ProductController (in the Controller\Base folder) and the ProductController (directly
under the Controller folder) are partial classes with the same name, the MVC View will look at both
ProductController(s) to find its respective action. If you need to add new code (Actions, methods, etc) that is
not generated by AspCoreGen 6.0 MVC, you can add them in the ProductController directly under the
Controller folder.

3.1.2.1.1.2 Public Methods

These are Public HttpPost Web Methods used by the generated MVC Views. These methods are called from a
JavaScript client code. You can say that calls to these methods cross from a client (javascript) code to a server
code (C#), some calls this AJAX functionality.

For example, the Delete Multiple functionality can be found in the generated MVC View and related Controller
(technically the Controller Base Class) as shown below. When a user deletes multiple items, the generated
ListMultipleDelete.cshtml MVC View looks for the ProductController (remember this inherits from the
ProductControllerBase) with a Public DeleteMultiple Method as highlighted in the MVC View’s code below:
‘Product/DeleteMultiple’. Code inside the Controller’s DeleteMultiple method is executed and the control flow
is returned back to the calling ListMultipleDelete.cshtml MVC View.

13

3.1.2.1.1.3 Private Methods

These are reusable Private Methods called by other methods in the Controller.

3.1.2.1.1.4 Methods that Return Data in JSON Format Use by the JQGrid

These are Public HttpGet Web Methods used by the generated MVC Views. These methods are called from a
JavaScript client code. You can say that calls to these methods cross from a client (javascript) code to a server
code (C#), some calls this AJAX functionality.

HttpGet Web Methods returns data to the calling client. In this instance, the client is a JQGrid plugin.

Note: These Public HttpGet Web Methods are not exclusively for use with a JQGrid client, any client can call
them. So you can write your own custom code and call any of these Public HttpGet Web Methods.

For example, the ListCrudRedirect.cshtml MVC View uses the JQGrid plugin to pull data from the GridData, a
Public Web Method in the ProductController.

14

3.1.2.2 The Controller - Empty

These are the Partial Classes generated directly under the Controllers folder (not including everything inside
the Base folder). The naming convention used is: TableNameController.cs. ASP.NET Core MVC recognizes this
as a Controller by default because of the suffix “Controller” in the name. One Controller is generated per
Database Table. You can add code in these Partial Class files.

Controllers in Visual Studio (Left) – Database Tables in MS SQL Server (Right)

3.1.2.2.1.1 HomeController

The HomeController.cs is unlike the other Controllers. It is not generated for a database table, instead, it is
used to host the Index Action Method.

As shown in the example below, Index.cshtml View looks for the related Index Action Method in the
HomeController.

The Index.cshtml MVC View is the Default page for the generated Web Application Project. It is the first page
that is launched when you run the generated Web Application Project in Visual Studio. It lists all the main

15

objects generated by AspCoreGen 6.0 MVC. ASP.NET Core MVC looks for an Index.cshtml View in the
HomeController to run as the default page as set up by the generated code in the Program class as shown
below.

3.1.3 Helper

This folder houses helper Class(es).

1. Functions.cs: Reusable Functions or Methods used by the Front-End application. You can add your
own code here.

16

Read the documentation comments on each one of the methods to learn about their respective
functionalities.

3.1.4 Views

This folder is generally needed by ASP.NET Core MVC by default. It houses MVC Views. You can add your own
MVC Views here. All the MVC Views generated by AspCoreGen 6.0 MVC will be overwritten the next time you
generate code for the same project.

Note: Do not add any code in any of the generated MVC Views. Please see the AppSettingsTab Tutorial,
page 5 (1.1.2 Files That Will Always Be Overwritten) for more information.

For more information on the different kinds of MVC Views generated by AspCoreGen 6.0 MVC, please see the
UISettingsTab Tutorial on Views to Generate, starting in page 5.

17

3.1.4.1 Views Generated for Database Tables

These MVC Views are generated based on the Database Tables you chose to generate code for. Each Folder as
shown below is directly related to a Database Table.

Views in Visual Studio (Left) – Database Tables in MS SQL Server (Right)

3.1.4.2 Partial Views for Database Tables

These Partial Views are generated based on the Database Tables you chose to generate code for. Each Partial
View is directly related to the respective Database Table as shown below and has a prefix “_AddEdit”. Partial
Views are located in the Views/Shared Folder. The ASP.NET Core MVC naming convention for Partial Views
starts with an Underscore “_” prefix.

18

Partial Views in Visual Studio (Left) – Database Tables in MS SQL Server (Right)

Each Partial View is used by the Add.cshtml and Update.cshtml MVC Views.

3.1.4.3 Other Partial Views

These are mainly ASP.NET Core MVC default Partial Views. The ASP.NET Core MVC naming convention for
Partial Views starts with an Underscore “_” prefix.

19

3.1.4.3.1 _Layout.cshtml

The _Layout.cshtml is a Partial View that is the default overall design or master page for all the MVC Views
that incorporates it. MVC Views that incorporate the _Layout.cshtml starts it’s code base where it shows the
@RenderBody() code shown below. You can change the overall design of all the generated MVC Views by
changing all or a few code here.

3.1.4.3.2 _ValidationScriptPartial.cshtml

The _ValidationScriptPartial.cshtml is a Partial View that references javascript (jQuery) libraries for use when
validating controls for errors. You can add your own code here.

20

It is used by MVC Views: Add.cshtml, Update.cshtml, Unbound.cshtml, and ListCrud.cshtml as shown below.

3.1.4.3.3 _ViewImports.cshtml

This Partial View imports directives that can be shared throughout all the generated MVC Views. You can add your
own code here.

3.1.4.3.4 _ViewStart.cshtml

By default, this Partial View is ran before any MVC View. You can add your own code here.

21

3.1.4.4 Index.cshtml View

This MVC View is the default page of the Web Application Project. The Index Action Method can be found in
the HomeController. Please read about the HomeController in page 14 for more information on the Index
View.

3.1.5 appsettings.json

This is a settings json file used by the ASP.NET MVC Core Web Application Project by default. You can add

your own code here.

3.1.6 Program.cs

The Program.cs Class is the entry point to the ASP.NET MVC Core Web Application Project by default. An
ASP.NET MVC Core web application project is technically a Console app. Just like any Console app, execution
of the app starts at the Program Class’s Main() Method. You can add your own code here.

22

3.2 MIDDLE LAYER PROJECT (BUSINESS LAYER, DATA REPOSITORY, SHARED LIBRARIES)

The generated Middle Layer Project contains the Middle-Tier and Data-Tier part of the N-tier layer generated
code (and shared libraries as well). This is a Class Library project. Classes/Interfaces here can be reused by
other projects/clients.

The Middle Layer Project is referenced by the Web Application Project and Web API Project for use. You can
also reference this project from other projects that you add to the generated Solution or altogether copy the
whole project to your own custom projects, and many more possibilities for reuse.

3.2.1 Business Layer (Middle Tier)

The Business Layer (Middler Tier) Interface and Class Files are located in the BusinessLayer Folder.

23

The Business Layer’s (or Middle Tier) main purpose is to serve as a client’s (a program’s) only access to the
Business Layer. The Business Layer’s purpose is to calculate things. For the purposes of AspCoreGen 6.0 MVC
code generation, in most parts, there really is nothing to calculate, instead, the Business Layer classes simply
returns data handed to it by the Data Repository (Data Tier), or carries and passes the CRUD* operations that
the Data Repository need to handle.

The Calculations we are talking about here are not just math problems, instead, these are logic that the Client
(controller, asp.net web form, web api, wcf program etc.) needs. For most parts, any Client should not be
doing any kind of Calculation, instead, a line code referencing a Business Layer Class’s Method should readily
return that logic.

For example (just an example and not generated by AspCoreGen 6.0 MVC), let’s say somewhere in the
Controller it needs the full name of a person.

var fullName = User.GetFullName();

In this example, “User” is the Business Layer (Middle-Tier Class), “GetFullName()” is a Public Method in the
“User” Business Layer Class. Somewhere in the “GetFullName()” Method, it’s calculating the first name and
last name of the user, return a full name, e.g.

return User.FirstName + “ “ + User.LastName;

3.2.1.1 Partial Interface/Partial Class – Used Like A Base Interface/Class

These are the interface and class files generated in the BusinessLayer\Base folder.

Do not add any code in these Interface and Class files.

One Partial Interface and Class (in the Base folder) is generated per Database Table. The example below
shows that you generated code for All Tables for the Northwind database.

Interfaces/Classes in Visual Studio under Base Folder (Left) – Database Tables in MS SQL Server (Right)

24

3.2.1.2 Business Layer - Empty

These are the interface and class files generated directly under the BusinessLayer folder (not including
everything inside the Base folder). The naming convention used is: TableNameBusinessLayer.cs. One
Business Layer interface and class is generated per Database Table.

Interfaces/Classes in Visual Studio directly under BusinessLayer Folder (Left) – Database Tables in MS SQL Server (Right)

You can add code in these Interface and Class files. You access all the Business Layer methods and
properties using these interfaces and classes.

These are the Interfaces/Classes that any client should access. You can also access the Web API Project’s
public methods when you generate the optional Web API project.

Note 1: When you generate the optional Web API Project, AspCoreGen 6.0 MVC’s generated code will always
access Web API Methods from clients like the Controller class. These Web API Methods encapsulates calls to
the related/respective Business Layer Methods as shown in the N-Tier Layering in page 4.

Note 2: You don’t always have to access the Web API Methods (from any client) generated by AspCoreGen 6.0
MVC, you can also access the Business Layer Classes directly if you want to. Again, please refer to Note 1
above.

3.2.2 Data Repository (Data Tier)

The Data Repository’s (or Data Tier) main purpose is to interact with the database. It does all the CRUD*
operations.

Note 1: Data Repository is called by the Business Layer, and once the CRUD operation is done it returns the
control back to the Business Layer.

Note 2: Most of the time, a Data Respository Class should only be called by their respective Business Layer
Class. Data Repository Interfaces/Classes have an “internal” access modifier to prevent clients outside of the
Middle Layer Project access.

25

Note 3: Since each Data Repository Interface/Class have an “internal” access modifier, any (Interface/Class,
Method) code you create in the Business Layer and Data Repository API Project will be able to access these
objects. Again, no Interface/Class should access a Data Repository Interface/Class other than a Business Layer
Interface/Class, please see Note 1.

These Data Repository (Data Tier) Interface/Class Files are located in the DataRepository Folder.

3.2.2.1 Partial Interface/Partial Class – Used Like A Base Interface/Class

These are the interface and class files generated in the DataRepository\Base folder.

Do not add any code in these Interface and Class files.

One Partial Interface and Class (in the Base folder) is generated per Database Table. The example below
shows that you generated code for All Tables for the Northwind database.

Interfaces/Classes in Visual Studio under Base Folder (Left) – Database Tables in MS SQL Server (Right)

26

3.2.2.2 Data Repository - Empty

These are the interface and class files generated directly under the DataRepository folder (not including
everything inside the Base folder). The naming convention used is: TableNameDataRepository.cs. One Data
Repository interface and class is generated per Database Table.

Interfaces/Classes in Visual Studio directly under DataRepository Folder (Left) – Database Tables in MS SQL Server (Right)

You can add code in these Interface/Class files. You access all the Data Repository methods and properties
using this Interface/Class.

These are the Interfaces/Classes that Business Layer Interfaces/Classes should access.

Note 1: Only a Business Layer Interface/Class should access their respective Data Repository Class.

3.2.3 Domain

The Domain Folder contains 2 reusable enum type objects; the CrudOperation.cs and FieldType.cs.

27

3.2.3.1 CrudOperation.cs

The CrudOperation enum is used to determine whether an Add or Update operation needs to be handled.
When not doing an Add or Update operation, use None.

3.2.3.2 FieldType.cs

The FieldType enum is used to determine a field’s type before executing an operation.

3.2.4 Models

These are Classes that contains Properties for each of the Database Table you generated code for. A Property
is equivalent to a Field or Column in their respective Database Table. Models is the “M” in MVC. Sometimes
Models are misinterpreted as the Data Tier part of MVC, in this case, it is not.

So why are Models generated in the Middle Layer Project instead of the Web Application Project where the
MVC Views and Controllers are generated in (after all it’s called Models, Views, Controllers, hence MVC)?
Simple, Models are reusable.

28

Models are located in the Models Folder.

3.2.4.1 Partial Class – Used Like A Base Class

These are the class files generated in the Models\Base folder.

Do not add any code in these Class files.

One Partial Class (in the Base folder) is generated per Database Table. The example below shows that you
generated code for All Tables for the Northwind database.

Classes in Visual Studio under Base Folder (Left) – Database Tables in MS SQL Server (Right)

29

Here’s an example of the Products Table Columns (Fields) in the Northwind database in relation to the
generated Model.

Partial Model Class in Visual Studio under Base Folder (Left) – Product Database Table Columns in MS SQL Server (Right)

3.2.4.2 Models - Empty

These are the class files generated directly under the Models folder (not including everything inside the Base
folder). The naming convention used is: TableNameModel.cs. One Model class is generated per Database
Table.

You can add code in these Class files.

Classes in Visual Studio directly under Models Folder (Left) – Database Tables in MS SQL Server (Right)

30

3.2.5 View Models

These are Classes that contains models (properties) used by MVC Views, hence the name ViewModels.

So why are ViewModels generated in the Middle Layer Project instead of the Web Application Project where
the MVC Views and Controllers are generated in? Simple, ViewModels are reusable.

ViewModels are located in the ViewModels Folder.

3.2.5.1 Partial Class – Used Like A Base Class

These are the class files generated in the ViewModels\Base folder.

Do not add any code in these Class files.

One Partial Class (in the Base folder) is generated per Database Table. The example below shows that you
generated code for All Tables for the Northwind database.

Partial View Model Class in Visual Studio under Base Folder (Left) – Product Database Table Columns in MS SQL Server (Right)

31

Here’s an example of the ProductViewModel code.

3.2.5.2 View Model - Empty

These are the class files generated directly under the ViewModels folder (not including everything inside the
Base folder). The naming convention used is: TableNameViewModel.cs. One ViewModel class is generated
per Database Table.

You can add code in these Class files.

Classes in Visual Studio directly under ViewModels Folder (Left) – Database Tables in MS SQL Server (Right)

32

These ViewModels (ProductViewModel in the example) are referenced and used by the following MVC Views:

1. ListSearch.cshtml
2. ListInline.cshtml
3. ListCrud.cshtml
4. ListByForeignKey.cshtml

Note: By default ASP.NET MVC Views use “Model” as a Keyword. Also by default, you can set the MVC View’s
Model following the @model directive. Here’s an example on how to set an MVC View’s Model:

3.2.5.2.1 ListSearch.cshtml

This MVC View uses the ProductViewModel as its Model. It uses the MVC View’s Model (ProductViewModel)
to fill the Select tags for the SupplierID and CategoryID using the MVC View’s Model, the
SupplierDropDownListData and CategoryDropDownListData respectively, these are Properties of the
ProductViewModel as shown in the code example in page 32.

33

The ViewModel used by the ListSearch.cshtml View is assigned from the respective Get Action method found
in the Controller (Base), it is then injected to the ListSearch.cshtml View. See code example below.

34

3.2.5.2.2 ListInline.cshtml

This MVC View uses the ProductViewModel as its Model.

The ListInline.cshtml uses the MVC View’s Model (ProductViewModel) to fill the Select tags for the SupplierID
and CategoryID in the dialog shown below using the MVC View’s Model, the SupplierDropDownListData and
CategoryDropDownListData respectively, these are Properties of the ProductViewModel as shown in 32.

The ViewModel used by the ListInline.cshtml View is assigned from the respective Get Action method found in
the Controller it is then injected to the ListInline.cshtml View. See code example below.

35

3.2.5.2.3 ListCrud.cshtml

This MVC View uses the ProductViewModel as its Model.

In this MVC View, when you Add a New Record or Update an Existing Record, a dialog pops up.

The ListCrud.cshtml uses the MVC View’s Model (ProductViewModel) to fill the Select tags for the SupplierID
and CategoryID in the dialog shown below using the MVC View’s Model, the SuppliersDropDownListData and
CategoriesDropDownListData respectively, these are Properties of the ProductViewModel as shown in the
ProductViewModelBase code example in page 30.

The ViewModel used by the ListInline.cshtml View is assigned from the respective Get Action method found in
the Controller (Base), it is then injected to the ListInline.cshtml View. See code example below.

36

3.2.5.2.4 ListByForeignKey.cshtml

This MVC View uses the ProductViewModel as its Model.

The ListByForeignKey.cshtml uses the MVC View’s Model (ProductViewModel) to fill the Select tag for the
ForeignKey (CategoryID) in the dialog shown below using the MVC View’s Model, the
CategoriesDropDownListData, this is one of the Properties of the ProductViewModel as shown in the example
code in page 32.

The ViewModel used by the ListByForeignKey.cshtml View is assigned from the respective Get Action method
found in the Controller (Base), it is then injected to the ListByForeignKey.cshtml View. You will notice that
code in the Controller’s Action Method only assigns one ViewModel Property compared to the
ListSearch.cshtml, ListInline.cshtml, and ListCrud.cshtml, the CategoriesDropDownListData. Because it only
needs data for one Select Tag (Categories) as seen in the image above.

37

3.2.5.3 Foreach View Models

These are Classes that contains models (properties) used by the ListForeach.cshtml MVC Views.

The ForeachViewModels are located in the ViewModels/Foreach Folder.

3.2.5.4 Partial Class – Used Like A Base Class

These are the class files generated in the ViewModels\Foreach\Base folder.

Do not add any code in these Class files.

One Partial Class (in the Base folder) is generated per Database Table. The example below shows that you
generated code for All Tables for the Northwind database.

Partial ForeacjViewModel in Visual Studio under Base Folder (Left) – Product Database Table Columns in MS SQL Server (Right)

38

Here’s an example of the ProductForeachViewModel code.

3.2.5.5 Foreach View Model – Empty

These are the class files generated directly under the ViewModels\Foreach folder (not including everything
inside the Base folder). The naming convention used is: TableNameForeachViewModel.cs. One ViewModel
class is generated per Database Table.

You can add code in these Class files.

Classes in Visual Studio directly under ViewModels\Foreach Folder (Left) – Database Tables in MS SQL Server (Right)

39

Here’s an example on how the ListForeach.cshtml MVC View uses the MVC View’s Model
(ProductForeachViewModel) to manually build the data grid. The snapshot below shows the
ProductForeachViewModel’s Properties referenced in the ListForeach.cshtml MVC View.

40

Here’s the ListForeach.cshtml MVC View in action.

3.3 WEB API PROJECT (WEB SERVICES)

The generated Web API Project is an optional project. This is an ASP.NET MVC API core project. The
application’s main purpose is to serve as Web APIs to clients such as the Web Application Project. In the Ntier-
Layering illustrations #2 and #3 in page 5, the Web Application Project (ASP.NET MVC Core) and other clients
are seen accessing the Web APIs instead of directly accessing the Business Layer (Middle Tier Objects).

These Web APIs encapsulates the Middle Layer (Business Layer). As mentioned in this document, clients can
either access the generated Web APIs or the Middle Layer (Business Layers) directly. But, when you generate
the optional Web API Project, the generated code will directly reference the Web APIs instead of the the
Middle Layer (Business Layers).

The main difference between the generated Web Application Project and the Web API Project is that the Web
API Project only contains Controllers (Web APIs) as the main objects of the project, and it does not have a user
interface* (see note).

Note: Although the Web API Project does not have a user interface, the generated Web API methods can be
tested in the Swagger Index page. The Swagger Index page can be used to test the generated Web API
methods, you may also supply it to (software) clients so they can have an idea on how your Web API methods
work (can be accessed). See page 44.

41

3.3.1 LaunchSettings.json, appsettings.json, Program.cs

These are similar objects as the ones seen in the Web Application Project. Please see the Web Application
Project for more information about these objects.

3.3.2 Controllers

The Controllers are the Web APIs.

This folder is generally needed by ASP.NET Core MVC by default. It houses Controller’s Methods that can be
used as Web APIs.

Note: The Controllers in the Web API Project and the Web Application Project are similar in nature. Please
read about the Controllers under the Web Application Project in page 10 for more information.

3.3.2.1 The Controller - Used Like A Base Class

Note: Not a base class. The code needed by the Controller are generated in these partial classes. These are
the partial class files generated in the Controller\Base folder. The naming convention used is:
TableNameAPIController.cs.

Do not add any code in these Partial Class files.

One Partial Class (in the Controllers\Base folder) is generated per Database Table. The example below shows
that you generated code for All Tables for the Northwind database.

42

Web API Controllers (Partial Classes) in Visual Studio (Left) – Database Tables in MS SQL Server (Right)

3.3.2.2 The Controller - Empty

These are the Partial Classes generated directly under the Controllers folder (not including everything inside
the Base folder). The naming convention used is: TableNameAPIController.cs. ASP.NET Core MVC recognizes
this as a Controller by default because of the suffix “Controller” in the name. One Controller is generated per
Database Table. You can add code in these Partial Class files.

Web API Controllers in Visual Studio (Left) – Database Tables in MS SQL Server (Right)

3.3.2.3 Accessing Web API Controllers (Methods)

Just like mentioned above, the Web API Project does not have a user interface just like the Web Application
Project’s MVC Views. We need to access Web API Controllers via code using HttpClient calls.

For example, we need to make an HttpClient Get Request call from the Web Application Project’s Controller
(ProductControllerBase) to access the GetRecordCount() Method in the Web API Controller
(ProductAPIControllerBase).

To make an HttpClient Get Request call, we use the:

43

1. Web API Project’s Web Address (URL, https://localhost:44306/)
2. Controller’s name (ProductAPI, minus the word “Controller”),
3. And the Method name (GetRecordCount())

The example below shows that GetRecordCount() (Web API Project) was called from the GridData Method
(Web Application Project) using the Web API’s base URL “https://localhost:44306/” (Functions Class in the
Middle Layer Project) plus the “ProductAPI/GetRecordCount”.

44

3.3.3 Swagger

When you run both the Web Application Project and the Web API Project at the same time in Visual Studio, 2 browser
instances launches on the screen, one for each project. The Web App’s home page shows the list of objects that was
generated while the Web API’s home page launches a Swagger User Interface showing a list of web API endpoints.

3.3.3.1 Testing An Endpoint (Web API Method)

Click an Endpoint in the list, for example the /CategoryApi/getrecordcount. And then click the Try it out
button. And then click the Execute button.

45

The result will show the Request URL, you can use this in your code to call this endpoint. Also shows the
Response Body 8 (getrecordcount endpoint simply returns a number), which is the total number of records in
the Categories database table. And the Response Code, 200 means Success (the web API call was successful).

46

Now try the /CategoryApi/selectskipandtake endpoint. Click the Try it out button. This endpoint requires 4
parameters:

1. sidx – Field to sort.
2. sord – Sort order. asc or blank (nothing) for ascending order, and desc for descending order.
3. rows – Number of rows you want returned.
4. page – based on the number of rows you’re requesting, there may be several pages to return, this is

the page number you want returned. For example, if there are 37 records in the Categories database
table, and the rows you requested is 5, then there will be 7 pages, you can request any number from 1
to 7.

The Response shows a Code 200 (success), 5 records returned (in descending order by CategoryName) in json
format.

47

* CRUD means Create, Retrieve, Update, and Delete. These are database operations.

You can read end-to-end tutorials on more subjects on using AspCoreGen 6.0 MVC Professional Plus that came
with your purchase. These tutorials are available to customers and are included in a link on your invoice when
you purchase AspCoreGen 6.0 MVC Professional.

Note: Some features shown here are not available in the Express Edition.

End of tutorial.

