
1

Customization by Adding Your Own Code

1 CONTENTS

1 Introduction .. 2

1.1 Read these tutorials in order .. 2

2 Adding New Files .. 2

2.1 Where Can You Add Files? .. 2

2.2 What Files Can You Add? .. 3

2.3 Why Add New Files? ... 3

3 Adding Code to a Generated File .. 3

4 End-to-End Example on Adding Your Own File and Code ... 4

4.1 Generate Code Using AspCoreGen 6.0 MVC Professional Plus ... 4

4.2 The Tutorial ... 4

2

Customization by Adding Your Own Code

1 INTRODUCTION

This topic will show you how to add your own code to the AspCoreGen 6.0 MVC’s generated code.

1.1 READ THESE TUTORIALS IN ORDER

1. Database Settings Tab
2. Code Settings Tab
3. UI Settings Tab
4. App Settings Tab
5. Selected Tables Tab
6. Selected Views Tab
7. Generating Code
8. The Generated Code for Database Tables/Views

Then follow these step-by-step instructions.

2 ADDING NEW FILES

Unlike the older versions, you can now add new files to any of the generated projects.

2.1 WHERE CAN YOU ADD FILES?

You can add files to the following generated projects:

1. Web Application Project (Presentation Layer – UI)
2. Middle Layer Project (Class Library – Business Layer, Data Repository, Shared Libraries).
3. Web API Project (Optional – Web Services)

3

2.2 WHAT FILES CAN YOU ADD?

Any file that is permissible by the respective projects listed above (see 2.1). For example, for an ASP.NET Core
MVC project you can add a/an:

1. MVC View
2. Controller
3. Class Files
4. Images
5. CSS Files
6. JavaScript Files
7. And many, many more

2.3 WHY ADD NEW FILES?

You don’t have to add new files, but, if you want to, you can.

Most of the time you may want to add functionality to a generated MVC View. You should not do this
because it will just get overwritten when you regenerate code for the same project. Instead add a new MVC
View and you can name it MyNewPage.cshtml.

3 ADDING CODE TO A GENERATED FILE

You can add your own customized code in some of the generated files. This is discussed in the App Settings
Tab document. Please read the App Settings Tab document to see the list of generated files where you can
add your own code to, these files will not get overwritten even when you regenerate code for the same
project.

4

4 END-TO-END EXAMPLE ON ADDING YOUR OWN FILE AND CODE

In here we’ll show you how to add files to the generated projects, and also add your own code to existing
generated files.

4.1 GENERATE CODE USING ASPCOREGEN 6.0 MVC PROFESSIONAL PLUS

You can generate your own Web Application using AspCoreGen 6.0 MVC Professional Plus and just follow
along this tutorial. Make sure to:

1. Choose Use Stored Procedures under the Generated SQL in the Database Settings tab.
2. Choose All Tables or Selected Tables Only under the Database Objects to Generate From in the Code

Settings tab.
3. Check the Use Web API under the Web API in the Code Settings tab.

Or, you can download the sample Generated Web Project Example from our website:
https://junnark.com/Product/AspCoreGen6MVC/GeneratedProjects. Download #4, the Stored Procedures
Using Web API Sample Project. Unzip the downloaded project and make sure to follow the instructions in the
Readme.txt file.

4.2 THE TUTORIAL

In this tutorial we’re going to create a new MVC View that is similar to the ListCrudRedirect.cshtml, but we will
add a functionality that shows the Supplier Name and Category Name instead of the Supplier ID and Category
ID respectively. We will also remove the UnitPrice, UnitsInStock, UnitsOnOrder, and ReorderLevel columns for
display.

1. Open the Generated Web Application (StoredProcWa.sln) in Visual Studio 2022. This solution should
have 3 projects: The Web Application (StoredProcWa), the Class Library (StoredProcWaApi), and the
Web API (StoredProcWaSrvcs) projects.

https://junnark.com/Products/AspCoreGen3MVC/GeneratedProjects

5

2. Add a new MVC View under the Product folder.

3. Choose Razor View - Empty and click the Add button.

4. Name the new MVC View: MyCustomView.cshtml and then click the Add button.

6

5. Delete all the commented code in the MyCustomView.cshtml. And then Open the
ListCrudRedirect.cshtml under the Product folder and Copy all code to MyCustomView.cshtml.

6. Now that we’ve added a new file (MVC View) to the generated Web Application Project, we will now
add code to an existing generated file. We need to add an Action Method for the
MyCustomView.cshtml in the respective ProductController.cs.

Again, please read the App Settings Tab document to see the list of generated files where you can add
your own code to, these files will not get overwritten even when you regenerate code for the same
project.

7

7. Open the ProductController.cs under the Controllers folder. Add an Action Method for the
MyCustomView.cshtml in the respective ProductController.cs as shown in red below. Also add the
using statements as shown below.

8. Right-click the Solution and click Properties. In the Solution Property Pages choose Multiple startup
projects. Choose Start for both StoredProcWa (web application project) and the StoredProcWaSrvcs
(web api project) and click OK.

9. Run the Web Application by pressing F5 while in Visual Studio 2022. Two browsers will launch, one for

the Web Application project and one for the Web API project. In the web application project’s browser
go to the MyCustomView MVC View. This page/view should look exactly like the
ListCrudRedirect.cshtml MVC View.

8

10. Close the browser and go back to Visual Studio 2022.

11. Open the ProductController.cs under the Controllers\Base folder and then copy the GridData method

to the ProductController.cs directly under the Controllers folder.

9

12. Change the name of the GridData method to MyGridData.

13. In the MyCustomView.cshtml, we are going to use the new MyGridData method that we added on the
ProductController.cs as the source of the grid’s data. To do this, simply change the URL property of
JQGrid from GridData to MyGridData as shown below. Also change the title of the page.

10

14. Run the Web Application by pressing F5 while in Visual Studio 2022. And then go to the
MyCustomView MVC View. This page/view should look just like the ListCrudRedirect.cshtml MVC View
with a new page title.

15. Close the browser and go back to Visual Studio 2022.

11

16. Again, open the ProductController.cs under the Controllers\Base folder and then copy the GetJsonData
method to the ProductController.cs directly under the Controllers folder.

12

17. Change the name of the GetJsonData method to GetJsonData4MyCustomGrid.

18. Let’s remove the Unit Price, Units In Stock, Units On Order, and Reorder Level from the grid. In the
MyCustomView, delete the Unit Price, Units In Stock, Units On Order, and Reorder Level in the
colNames and colModel properties of the JQGrid. The code should look like the one shown below after
deletion.

13

19. In the ProductController under the GetJsonData4MyCustomGrid method, delete the lines of code that
pertains to the Unit Price, Units In Stock, Units On Order, and Reorder Level. The code should look like
the one shown below after deletion.

20. Run the Web Application by pressing F5 while in Visual Studio 2022. And then go to the
MyCustomView MVC View. The Unit Price, Units In Stock, Units On Order, and Reorder Level should no
longer be displayed on the grid.

14

21. Close the browser and go back to Visual Studio 2022.
22. Go back to the ProductController in #19 and update the SupplierID and CategoryID to show the

CompanyName and CategoryName respectively.

23. Now we will change the display on the Supplier ID and Category ID. Instead of showing just the IDs for

these foreign keys, we will show the Company Name (Supplier) and Category Name (Category)
respectively. To do this, we need to:

a. Create a new Stored Procedure.
b. Create 2 new Properties as Models for Company Name and Category Name.
c. Create a new Data Repository method.
d. Create a new Business Layer method.
e. Create a new Web API method.

Note: There are many other ways to do this (since programming is also an art, not just science), but
we’d like to walk you through the process of Adding New Code to the generated Web Application
and Updating Existing generated code.

15

24. Create a new Stored Procedure named acg6mvc_Product_MyCustomSelectSkipAndTake in the
Northwind Database using Microsoft SQL Server Management Studio. Go to the Stored Procedures
folder under Programmability and Modify the acg6mvc_Product_SelectSkipAndTake Stored Procedure.

25. This will open up the acg6mvc_Product_SelectSkipAndTake Stored Procedure on a window.

16

26. Modify the Stored Procedure. Change the ALTER keyword to CREATE. Change the Stored Procedure
name to acg6mvc_Product_MyCustomSelectSkipAndTake. Add INNER JOINs to the Suppliers and
Categories tables. Remove references to the UnitPrice, UnitsInStock, UnitsOnOrder, and ReorderLevel
columns.

17

27. Make sure to click Execute in the Microsoft SQL Server Management Studio’s menu to create the
acg6mvc_Product_MyCustomSelectSkipAndTake Stored Procedure. When you refresh the Stored
Procedures, the acg6mvc_Product_MyCustomSelectSkipAndTake should now be displayed.

28. Create 2 new Properties as Models for CompanyName and CategoryName. Open the
ProductModel.cs located in the StoredProcWaApi (Middle Layer Project) under the Models folder. Add
the CompanyName (Suppliers Database Table) and CategoryName (Categories Database Table)
properties. Also add the using statement as shown below.

18

29. Create a new Data Repository method. In Visual Studio, open the following:

a. IProductRepository – An interface, found under the DataRepository\Base\Interface folder. Used
like a base interface.

b. IProductRepository – An interface, found under the DataRepository\Interface folder. We can
add or update code here.

c. ProductRepository – A class, found under the DataRepository\Base folder. Used like a base
class.

d. ProductRepository – A class, found under the DataRepository folder. We can add or update
code here.

30. Copy the SelectSkipAndTakeAsync method from the IProductRepository (used like a base interface) to

the IProductRepository under the DataRepository\Interface folder. And then rename the method to
MyCustomSelectSkipAndTakeAsync. Also add the using System Data reference.

31. Copy the SelectSkipAndTakeAsync method from the ProductRepository (used like a base class) to the

ProductRepository directly under the DataRepository folder. And then rename the method to

19

MyCustomSelectSkipAndTakeAsync. Also add the using System Data reference. Also add “MyCustom”
to the stored procedure name: acg6mvc_Products_MyCustomSelectSkipAndTake.

32. Create new Business Layer method(s). In Visual Studio, open the following:

a. IProductBusinessLayer – An interface, found under the BusinessLayer\Base\Interface folder.
Used like a base interface.

b. IProductBusinessLayer – An interface, found under the BusinessLayer\Interface folder. We can
add or update code here.

c. ProductBusinessLayer – A class, found under the BusinessLayer\Base folder. Used like a base
class.

d. ProductBusinessLayer – A class, found under the BusinessLayer folder. We can add or update
code here.

20

33. Copy the SelectSkipAndTakeAsync method from the IProductBusinessLayer (used like a base interface)
to the IProductBusinessLayerunder the BusinessLayer\Interface folder. And then rename the method
to MyCustomSelectSkipAndTakeAsync.

34. Copy the SelectSkipAndTakeAsync, GetListOfProduct, and CreateProductFromDataRowAsync methods
from the ProductBusinessLayer (used like a base class) to the ProductBusinessLayer directly under the
BusinessLayer folder. And then rename the methods to MyCustomSelectSkipAndTakeAsync,
MyCustomGetListOfProduct, and MyCustomCreateProductFromDataRowAsync respectively. Also add
the using System Data reference.

21

22

23

35. Remove references for UnitPrice, UnitsInStock, UnitsOnOrder, and ReorderLevel in the
MyCustomCreateProductFromDataRowAsync method, and then add references to CompanyName and
CategoryName.

36.

37. Go back to the ProductController under the Controllers folder. Rename the Web API call by prefixing it
with MyCustom (MyCustomSelectSkipAndTake).

24

38. Create a new Web API method. In the Web API Project (StoredProcWaSrvs), open the
ProductApiController.cs under the Controllers\Base folder and then copy the SelectSkipAndTake
method to the ProductApiController.cs directly under the Controllers folder. Rename the Route,
Method Names adding “MyCustom”.

Add a readonly variable: _productBusinessLayer. Add a Constructor injecting the
IProductBusinessLayer to it.

25

39. In the MyCustomView.cshtml MVC View, change the colNames to Supplier and Category respectively.
Also, remove the SupplierID and CategoryID and replace with CompanyName and CategoryName
respectively as shown below.

40. Run the Web Application by pressing F5 while in Visual Studio 2022. And then go to the
MyCustomView MVC View.

This finished MVC View no longer shows the UnitPrice, UnitsInStock, UnitsOnOrder, and ReorderLevel
columns. It also shows the CompanyName (Supplier) and CategoryName (Category) with the
SupplierID and CategoryID in parenthesis instead of just showing the SupplierID and CategoryID
respectively. The CompanyName (Supplier) and CategoryName (Category) are also sortable.

You can read end-to-end tutorials on more subjects on using AspCoreGen 6.0 MVC Professional Plus that came with your purchase.
These tutorials are available to customers and are included in a link on your invoice when you purchase AspCoreGen 6.0 MVC
Professional. Download example shown here at: https://junnark.com/CustomProjectSamples/acg6mvc/StoredProcWa.zip

Note: Some features shown here are not available in the Express Edition. The code in this tutorial is available for download for
paying customers only, please email us at Software Support for more information.

End of tutorial.

