
1

The Generated Web API

1 CONTENTS

1 Introduction .. 2

2 Swagger Index Page .. 2

2.1 Web API Endpoints? .. 3

2.2 Web API Schema? ... 3

3 Testing Web API Endpoints ... 5

3.1 Get Record Count Endpoint .. 5

3.2 Select, Skip, and Take Endpoint .. 6

3.3 Insert Endpoint ... 7

2

The Generated Web API

1 INTRODUCTION

This topic will show you how to test the generated Web API endpoints.

2 SWAGGER INDEX PAGE

When you run the generated Web Application and Web API projects by pressing F5 in Visual Studio, two
browsers are launched, one for each of the projects respective. The Web API project will launch the Swagger
Index Page by default, shown below. The Swagger Index Page contains Web API Endpoints for each of the
database table that you generated code for.

3

2.1 WEB API ENDPOINTS?

In the example above, the CategoryAPI which is derived from the Categories table in the Northwind database
shows the Web API Endpoints available for the Categories table. If you move further down the web page
you’ll see other Web APIs such as CustomerAPI, CustomerAPI, EmployeeAPI, ProductAPI, etc, where each also
have their own Web API Endpoints just like the CategoryAPI.

2.2 WEB API SCHEMA?

Further down the web page you’ll notice that a Schema for each Web API is shown. The Schema shows the
structure of the respective Web API. This is how we know how to interact (what type of data to pass) with the
Web API Endpoints. For example, the CategoryAPI has 3 fields, categoryID, categoryName, and description.
Each of these fields shows their type and other restrictions.

a. categoryID: int32 (required)
b. categoryName: string (required), maximum length 15 characters.
c. description: string, no maximum length (nullable – not required)

4

For most parts the Schema’s Fields are direct reflection of the database table fields it represents. For example,
the Category Schema’s Fields are directly related to the Categories Database Table Fields.

Some Schemas have more fields in them than the Database Table it represents, like the Product Schema.
When interacting with the ProductAPI Schema all that is required are the Fields available in the Products
Database Table. We will show this later when we try to insert a record in the Products Table.

5

3 TESTING WEB API ENDPOINTS

As developers this is probably self-explanatory. However, we will show how to test some of these endpoints.

3.1 GET RECORD COUNT ENDPOINT

Click the /CategoryApi/getrecordcount. And then click the Try it out button. And then click the Execute
button.

The result will show the Request URL, you can use this in your code to call this endpoint. Also shows the
Response Body 8 (getrecordcount endpoint simply returns a number), which is the total number of records in
the Categories database table. And the Response Code, 200 means Success (the web API call was successful).

6

3.2 SELECT, SKIP, AND TAKE ENDPOINT

Now try the /CategoryApi/selectskipandtake endpoint. Click the Try it out button. This endpoint requires 4
parameters:

1. sidx – Field to sort.
2. sord – Sort order. asc or blank (nothing) for ascending order, and desc for descending order.
3. rows – Number of rows you want returned.
4. page – based on the number of rows you’re requesting, there may be several pages to return, this is

the page number you want returned. For example, if there are 37 records in the Categories database
table, and the rows you requested is 5, then there will be 7 pages, you can request any number from 1
to 7.

The Response shows a Code 200 (success), 5 records returned (in descending order by CategoryName) in json
format.

7

3.3 INSERT ENDPOINT

Under the ProductAPI, click the /ProductApi/insert endpoint. Click the Try it out button. This endpoint only
has 1 parameter: isForListInlineOrListCrud parameter. This parameter is used in the web application, so we
don’t really care about this one for this example.

What’s more important is the Request body. Because the operation is a POST, we need to pass the
parameters via the Request body, and it’s showing here that it’s expecting a json formatted body. It’s also
showing the type of each parameter.

Note: for a more detailed information on the requirements for each of the parameters in the Request Body,
please refer to the respective Schema of the Web API as shown in 2.2.

8

Like discussed in Page 4, under the Web API Schema section, some of these fields are not required. We need
to remove some of the parameters that are not required and change the values we want inserted in the
Products table, and then click Execute.

We got a Server Response Code 200, which means Success, this record has been inserted in the database.
Note: Although the productID was sent on this Web API post, it is disregard by the Data Repository code on
the backend because it is an Identity Field on the database, which means the database will generate the
productID on the fly everytime we add a new record on the Products table in the database.

9

You can read end-to-end tutorials on more subjects on using AspCoreGen 9.0 MVC Professional Plus that came with your purchase.
These tutorials are available to customers and are included in a link on your invoice when you purchase AspCoreGen 9.0 MVC
Professional. Download example shown here at: https://junnark.com/CustomProjectSamples/acg6mvc/StoredProcWa.zip

Note: Some features shown here are not available in the Express Edition. The code in this tutorial is available for download for
paying customers only, please email us at Software Support for more information.

End of tutorial.

